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We study the one-dimensional Hubbard model with nearest-neighbor and next-nearest-neighbor hopping
integrals by using the density-matrix renormalization group method and Hartree-Fock approximation. Based on
the calculated results for the spin gap, total-spin quantum number, and Tomonaga-Luttinger-liquid parameter,
we determine the ground-state phase diagram of the model in the entire filling and wide parameter region. We
show that, in contrast to the weak-coupling regime where a spin-gapped liquid phase is predicted in the region
with four Fermi points, the spin gap vanishes in a substantial region in the strong-coupling regime. It is
remarkable that a large variety of phases, such as the paramagnetic metallic phase, spin-gapped liquid phase,
singlet and triplet superconducting phases, and fully polarized ferromagnetic phase, appear in such a simple
model in the strong-coupling regime.
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I. INTRODUCTION

For several decades, quasi-one-dimensional materials
have been one of the major subjects of research in the field of
condensed matter physics.1–3 A standard description of such
materials is the one-dimensional �1D� Hubbard model.4–6

The simplest case with the cosine dispersion �nearest-
neighbor hopping only� was solved exactly by Lieb and Wu
via the Bethe ansatz.7 The low-lying excitations were also
understood well as the Tomonaga-Luttinger liquid �TLL�,8
where the renormalization group technique and bosonization
method have been used.9 However, modifications of the 1D
Hubbard model are often required for realistic descriptions of
the materials. In general, such modifications �even if they are
small� make the analyses much more difficult since the cor-
relation effects are strong in low-dimensional systems. Thus,
even in the 1D systems, our knowledge is still far from being
complete.

One of the typical modifications is to add a next-nearest-
neighbor hopping term in the Hamiltonian, which brings a
sort of frustration to the spin degrees of freedom of the sys-
tem as well as some coupling between spin and charge de-
grees of freedom. In the past, this model has been exten-
sively studied and some distinctive features, which are
absent in the simple 1D Hubbard model, have been found. At
half-filling, the system has three phases: one is a Mott insu-
lating phase with 2kF spin-density-wave �SDW� correlation
�which occurs when the spin frustration is small�; the others
are a spin-gapped insulating phase with incommensurate spi-
ral correlation and a spin-gapped metallic phase for suffi-
ciently large spin frustration.10–13 Away from half-filling, the
existence of ferromagnetism has been shown analytically in
some limiting cases for infinite strength of the coupling,14–16

which has been confirmed numerically for finite but large
enough strength of the coupling.17–19 Also, it has been
pointed out that, although a weak-coupling analysis leads to
only a spin-singlet superconducting phase with finite spin
gap,20 previous density-matrix renormalization group
�DMRG� studies suggest that the spin gap vanishes for large

enough coupling strengths when the next-nearest-neighbor
hopping is positive and large.11,21 Moreover, a spin-triplet
superconducting phase has been shown to exist at
quarter-filling.22 As just described, the present system has
many phases unparalleled in other 1D strongly correlated
electron systems; i.e., our modified 1D model can involve a
variety of physical phenomena. In particular, detecting their
phases is of particular interest in the light of recent proposals
to realize a Hubbard model of fermions on an optical
lattice.23

There are some relevant materials to the 1D Hubbard
model with next-nearest-neighbor hopping. One is the
quasi-1D organic conductor �TMTSF�2X �X=PF6,ClO4�, the
so-called Bechgaard salt.24,25 This material exhibits a rich
phase diagram upon variation of the pressure and tempera-
ture. At low temperatures, the phase changes in the order of
the spin-Peierls insulator, antiferromagnetic insulator, SDW
insulator, superconductor, and paramagnetic metal with in-
creasing pressure. So far, experimental evidence that the su-
perconducting state is in the spin-triplet channel has been
piled up.26,27 Theoretically, it has been proposed that a trian-
gular lattice formed by the hopping integrals makes the fer-
romagnetic ring-exchange mechanism relevant, which, in
turn, leads to the spin-triplet superconductivity.28

Another relating system is the newly synthesized copper
oxide compound Pr2Ba4Cu7O15−�.29 This material consists of
both the single CuO chains �as in PrBa2Cu3O7� and double
CuO chains �as in PrBa2Cu4O8�, and those chains are sepa-
rated by insulating CuO2 plains. It has been reported that the
double chains turn into a superconducting state below Tc
�10 K.30 So far, some numerical studies have been carried
out; on the basis of the TLL theory, a weak-coupling phase
diagram has been obtained in the d-p double chain
model.31,32 Also, in a reduced single-band double chain
model, it has been suggested that the superconducting gap
has an extended s-wave-like form, which does not contradict
with the experimental results.33 Relevance of charge fluctua-
tions has also been discussed.34,35

In this paper, we study the 1D Hubbard model with the
next-nearest-neighbor hopping. We calculate the TLL param-
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eters, spin gap, and total-spin quantum number by using the
DMRG method and Hartree-Fock �HF� approximation.
Based on the results, a detailed phase diagram as a function
of band filling and hopping integrals is determined in both
weak-coupling and strong-coupling regimes. Surprisingly,
the phase diagram of the model contains a large number of
distinct phases in the strong-coupling regime although the
model is quite simple. We hope that the present investigation
will contribute to better understanding of the 1D strongly
correlated electron systems.

This paper is organized as follows. In Sec. II, we define
the 1D Hubbard model with the next-nearest-neighbor hop-
ping and study the model in the noninteracting case. In Sec.
III, we discuss how the Hartree-Fock approximation and
DMRG method are used to calculate the TLL parameter. In
Sec. IV, we present the calculated results and obtain the
phase diagrams of the model based on the numerical results.
Section V contains summary and conclusions.

II. MODEL

We consider the 1D Hubbard model with the next-nearest-
neighbor hopping, which is defined by the Hamiltonian

H = t1�
i,�

�ci+1�
† ci� + H.c.� + t2�

i,�
�ci+2�

† ci� + H.c.�

+ U�
i

ni↑ni↓, �1�

where ci�
† �ci�� is the creation �annihilation� operator of an

electron with spin � at site i, and ni�=ci�
† ci� is the number

operator. t1��0� and t2 are the nearest-neighbor and next-
nearest-neighbor hopping integrals, respectively, and U is the
on-site Coulomb interaction �see Fig. 1�a��.

The dispersion relation is given by

�k = 2t1 cos ka + 2t2 cos 2ka , �2�

where k is the wave number and a is the lattice constant; we
set a=1 hereafter. The bare bandwidth is estimated as W

=2t1+4�t2�+
t1
2

4�t2� for �t2 / t1��1 /2 and as W=4t1 for �t2 / t1�
�1 /2. The ground-state phase diagram in the noninteracting
case �U=0� is shown in Fig. 1�b�. For �t2 / t1��cos2��2
−n�� /2� /sin2��2−n��� �n is the band filling�, the system has
two Fermi points and the physical properties at low energies
are qualitatively the same as a system with t2=0. On the
other hand, for �t2 / t1��cos2��2−n�� /2� /sin2��2−n���, there
are two branches, namely, four Fermi momenta �kF1 and
�kF2 ��kF2�� �kF1��. In this case, as discussed in Sec. IV A,
the Fermi surface can be mapped to that of a two-leg Hub-
bard ladder model at weak coupling. We designate the criti-
cal boundary at which the Fermi surface splits into four
points as the Fermi-point �FP� boundary and the FP boundary
is characterized by the condition kF1=0 �or kF2=��. Hence,
the model in Eq. �1� has to be dealt with as a two-band
system within the TLL theory. Note that the parameter region
n�1, t2�0 is exactly equivalent to the region n�1, t2�0
under the particle-hole transformation. By the same token,
the region n�1, t2�0 equals the region n�1, t2�0. We

therefore consider only the region 0�n	1 for both positive
and negative values of t2.

III. METHOD

The low-energy properties of TLL are characterized by a
few quantities; most notably, the TLL parameter K
 deter-
mines the long-range behavior of various correlation func-
tions in the metallic TLL ground state. It has, however, been
recognized that the numerical calculation of K
 for an arbi-
trary strength of correlations is very difficult. Recently, one
of the authors has succeeded in overcoming this difficulty,36

where a simple and stable method for calculating K
 with the
DMRG technique in single-band 1D systems is proposed. In
this section, we extend the method to the two-band systems
and check the performance of the method by comparing the
results with those obtained by the HF approximation which
is known to provide a good estimation of K
 in the weak-
coupling regime.

A. Hartree-Fock approximation

It is known that the small-U perturbative estimation of K


is feasible for U�W /2 in the 1D Hubbard model.37 One of
the authors applied this perturbative method to a two-leg
Hubbard ladder model with four Fermi points and confirmed
that it gives quantitatively reliable results in the weak-
coupling regime �U�W /4�.38 Since the low-energy physics
of the two-leg ladders is equivalent to that of our model
defined by Eq. �1�20 we may naturally expect the perturbative
estimation to be applicable to our case.

In the TLL theory, the critical exponent K
 is given by

�

�

�

�

�

� � �

� � �
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FIG. 1. �a� Schematic representation of the lattice structure of
the 1D Hubbard model with the next-nearest-neighbor hopping and
�b� its U=0 phase diagram, where the thick solid curves separate
the two regimes. The inset shows the qualitative behavior of the
band dispersion �k, where the Fermi level is indicated by the thin
line.
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K
 =
1

2
���D , �3�

where � is the charge susceptibility defined as

�−1 =
1

L

�2Egs�n�
�n2 , �4�

and D is the Drude weight defined as

D =
�

L

�2Egs�
�
�
2 . �5�

Here, L is the number of lattice site, n is the band filling, Egs
is the ground-state energy, and 
 is the magnetic flux.39

Within the first-order perturbation expansion, Egs can be de-
termined as

Egs = E0 +
UL

4
n2, �6�

where E0 is the ground-state energy of the corresponding
noninteracting system. We then obtain

�−1 = �0
−1 +

U

2
, D = D0 =

4�0
−1

�
, �7�

where �0 and D0 are the charge susceptibility and Drude
weight of the noninteracting system, respectively. A simple
expression for K
 is therefore obtained as

K
 	� 2

2 + U�0
. �8�

Note that this scheme is equivalent to the HF
approximation.38

B. Density-matrix renormalization group

With the DMRG method, the TLL parameter K
 is most
generally obtained from the long-range decay of the density-
density correlation. The density-density correlation function
is defined by the ground-state expectation value

CNN�r� =
1

L
�
l=1

L

�
nl+rnl� − 
nl+r�
nl�� . �9�

When the system has two Fermi points, it is known that the
asymptotic behavior is given by

CNN�r� � −
K


��r�2 +
A cos�2kFr�

r1+K

ln−3/2�r� + ¯ , �10�

where A is a constant.37,40 We can extract K
 via the Fourier
transformation of Eq. �9�,

CNN�q� =
1

L
�
l=1

L

e−iqrCNN�r� , �11�

where 0	q�2�. From the derivative at q=0, one finds the
expression

K
�L� =
L

2
CNN�2�

L

, K
 = lim

L→�
K
�L� . �12�

for the thermodynamic limit. It has been demonstrated that
the value of K
 can be determined quite accurately by using
Eq. �12� with the DMRG method for the single-band Hub-
bard model. Thus, for the precise estimation, we need to
calculate the density-density correlation function directly in
the Fourier space; see Ref. 36 for further details.

Let us now apply this scheme of estimating K
 to a sys-
tem with four Fermi points. We then have to assume the
asymptotic behavior of the density-density correlation func-
tion. Here, we assume the behavior

CNN�r� � −
2K


��r�2 +
B cos�2�kF1 − kF2�r�

r2k

+ ¯ , �13�

in analogy with the case of two coupled chains,41 because the
calculated low-energy excitation spectra of our model are
similar to those of the two coupled chains.42 We thus obtain

K
�L� =
L

4
CNN�2�

L

, K
 = lim

L→�
K
�L� �14�

as a substitute for Eq. �12�. In principle, one may calculate
Eq. �14� in the same way as Eq. �12�. However, the discarded
weight in the DMRG calculation increases rapidly with in-
creasing �t2 / t1�, so that the calculation must be carried out
more carefully.

In this paper, we apply the open-end boundary conditions
for precise DMRG calculations.43 We keep up to m	4500
density-matrix eigenstates in the DMRG procedure and ex-
trapolate the calculated quantities to the limit m→�. We also
use several chains with lengths L=40–240 and then perform
the finite-size scaling analysis based on the size dependence
of the quantities. In this way, we can obtain the quite accu-
rate ground state with an accuracy of �Egs /L�10−6–10−5t1.
In Fig. 2, we demonstrate the finite-size scaling analysis for
the �a� two- and �b� four-Fermi-point cases. For both cases,
one can see the systematic extrapolation of K
 to the thermo-
dynamic limit L→�. We also find that, at least in the cou-
pling strength U / t1=2, a good agreement is obtained be-
tween the extrapolated values of K
 obtained from the
DMRG data and the corresponding values of K
 obtained
from the HF approximation.

IV. RESULTS

A. Weak-coupling limit

Let us first consider the phase diagram within a weak-
coupling analysis. Balents and Fisher have obtained the
weak-coupling phase diagram of the two-leg Hubbard ladder
model using the renormalization group technique and
bosonization method.9 Their analysis can be universally ap-
plied to a system with four Fermi points. In addition, Fab-
rizio pointed out20 that the low-energy physics of the two-leg
Hubbard ladder model is exactly the same as that of our
model in Eq. �1� via a simple mapping of the Fermi points,
i.e., �kF1→ �kF

a and �kF2→ �kF
b , where �kF

a ��kF
b� are

the Fermi points for the antibonding �bonding� band of the
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two-leg Hubbard ladder model. Then, Daul and Noack
adapted the weak-coupling analysis of Ref. 9 for the analysis
of the Hamiltonian in Eq. �1�.44

In Fig. 3, we show the phase diagram for �t2 / t1��3 and
n�1 in the weak-coupling limit U=0+. The notation C�S�
denotes a phase with � gapless charge modes and � gapless
spin modes, where � and � are integer values from 0 to 2.
Generally speaking, a metallic phase with four �two� Fermi
points is characterized by C1S0 �C1S1�. Also, a spin-gapped
liquid phase C1S0 appears around the FP critical boundary
due to the van Hove singularity of the model. Note that the
TLL parameter has the value K
=1 in nearly all the metallic
regimes, except at the FP critical boundary and on the C0S1
line, where we have K
=1 /2.

B. Small U

Let us turn to the small-U perturbative regime where we
choose the coupling strength U=2t1. In this regime, the HF
estimation of K
 �Eq. �8�� is expected to give a good approxi-
mation. When the system has two Fermi points, we can sim-
ply obtain

�0
−1 =

�

2
vF, �15�

which leads to

K
 =� �vF

�vF + U
, �16�

where the Fermi velocity is

vF = 2t1 sin��n/2� − 4t2 sin��n� . �17�

Expression �16� is universal to the TLL with two Fermi
points. On the other hand, when the system has four Fermi
points, we obtain

�0
−1 =

�

2

�vF1vF2�
�vF1� + �vF2�

�18�

after some calculations, where vF1 �vF2� is the Fermi velocity
at the momentum kF1 �kF2� given as

vF�1,2� = 2t1 sin�kF�1,2�a� − 4t2 sin�2kF�1,2�a� . �19�

By substituting Eq. �18� for Eq. �8�, we obtain

K
 =� �vF
*

�vF
* + U

�20�

using the effective Fermi velocity

vF
* �

�vF1vF2�
�vF1� + �vF2�

. �21�

In Fig. 4, we show the contour maps of K
 at U=2t1 in the
parameter space of t2 / t1 and n, which are calculated with �a�
the HF approximation and �b� the DMRG method. The thick
line represents the FP critical boundary and the thin lines
form the contour map of K
. We find that the quantitative
agreement between the two phase diagrams is pretty good,
which means that the HF scheme is still valid for this inter-
action strength U / t1=2. In the entire region of the phase
diagram, we find K
�1 /2 and, thus, the ground state may be
described as the TLL. However, the deviation of the HF data
from the DMRG data is relatively large around t2�0 and
n�1, where the umklapp scattering becomes dominant.

When the system has two Fermi points, the ground state
can be basically presumed to be a standard 1D TLL. In both
contour maps, K
 becomes larger as t2 decreases for fixed n.
This is because the effective interaction parameter U /vF is
reduced with decreasing t2. In particular, K
 varies drasti-
cally around t2�0 except when n�0.1 and n�0.9, which is
due to the rapid change of the inverse Fermi velocity vF

−1; for
example, the Fermi velocity is estimated as vF=�2t1−4t2 at
quarter-filling �n=1 /2�. Note that K
=1 /2 is reached in the
limits n→0 and 1 and that K
�1 /2 everywhere else.

As soon as the Fermi surface splits from two into four
points, K
 drops �almost� discontinuously to 1 /2. When the
system has four Fermi points, vF

* goes to zero in the limits
vF1→0 �kF1→0� or vF2→0 �kF2→�� �corresponding to the
diverging density of states�. Consequently, the effective in-
teraction parameter diverges, U /vF

*→�, and the strong-
coupling value K
=1 /2 is produced. This behavior is similar

FIG. 2. Values of K
�L� calculated by the DMRG method and
plotted as a function of the inverse system size 1 /L. The solid lines
are the polynomial fits to the data for finite-size scaling analysis.
The diamonds indicate the results calculated from the Hartree-Fock
approximation. The upper and lower panels show the result at
t2 / t1=−3 and t2 / t1=3, respectively. U / t1=2 and n=0.2 are assumed
in both panels.
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FIG. 3. Phase diagram of our model in the weak-coupling limit
U=0+. We follow the notation of the symbol C�S� of Ref. 9.
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to that of the 1D single-band Hubbard model in the limit of
n→0. Then, K
 increases rapidly as the parameters are away
from the FP boundary line and gets closer to 1 in the limit of
�t2�→�. In the two-band model, the criterion for the domi-
nant superconducting correlation is K
�1 /2. We thus find
that the superconducting correlation is the most dominant in
the entire region with four Fermi points.

C. Large U

Let us now consider how the small-U contour map is
affected by increasing the strength of the on-site Coulomb
interaction. For large enough coupling U, it has been found
that there is an extensive ferromagnetic phase17–19 and that
the spin-triplet superconducting state is stabilized at the in-
termediate filling n�0.5 when the next-nearest-neighbor
hopping is large enough, t2 / t1�2.22 A breakdown of the TLL
state was also reported for the 1D Hubbard and t-J models
with the next-nearest-neighbor hopping integrals,45,46 where
the latter model is essentially the same as our model in Eq.
�1� in the strong-coupling regime.

We study here the case of U=10t1 as a typical interaction
strength for realistic strongly correlated electron systems. In
Fig. 5, we show the contour map of K
 obtained by the �a�
HF approximation and �b� DMRG method. We find that, at
low densities �n�0.4�, the agreement between the two con-
tour maps is qualitatively good, while at intermediate to high
densities �n�0.4�, the situation seems to be totally different.

In fact, the HF scheme is no longer appropriate and, there-
fore, the spin and charge fluctuations have to be seriously
taken into account beyond the usual weak-coupling picture.
We will thus proceed to a discussion based on the DMRG
contour map in the following.

We first note that, as long as the system has two Fermi
points, the basic properties are qualitatively the same as
those of the weak-coupling regime. Thus, the behavior of K


at U=10t1 is still similar to that at U=2t1 although the value
of K
 becomes relatively small. We also note that the FP
boundary is �slightly� shifted toward the smaller �t2� direction
due to renormalization of the band structure at U�0, as was
pointed out in Ref. 44. At the same time, the FP boundary
line is somewhat blurred because of some strong quantum
effects; the change in K
 at the FP boundary is still sharp but
no longer discontinuous as in the weak-coupling limit.

Let us turn to the case with four Fermi points. The ground
state is affected drastically by the �strong� interaction
strength. Unlike in the small-U contour map, we find that
there is a substantial region with K
�0.5 around half-filling
�denoted by the shadowed area in Fig. 5�b��. According to
the TLL theory, this value of K
 is possible only when long-
range repulsive interactions are included in the model.
Therefore, the ground state in the shadowed regime would
no longer belong to the general class of the TLLs. This is
consistent with the previous DMRG results.44,46 As discussed
in the next subsection, this non-TLL-like regime consists of
a spin-gapped phase and a paramagnetic phase with strong
ferromagnetic fluctuations. Also, it is interesting to note that
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FIG. 4. Contour map of the TLL parameter K
 in the n-t2 / t1

plane for the weak-coupling interaction U=2t1. The results are ob-
tained from the �a� HF and �b� DMRG calculations. The thick line
represents the FP critical boundary.
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FIG. 5. Contour map of the TLL parameter K
 in the n-t2 / t1

plane for the strong-coupling interaction U=10t1. The results are
obtained from the �a� HF and �b� DMRG calculations. The thick
line represents the FP critical boundary.

PHASE DIAGRAM OF THE ONE-DIMENSIONAL HUBBARD… PHYSICAL REVIEW B 77, 085119 �2008�

085119-5



the TLL parameter remains constant K
�0.5 in a wide re-
gion of the phase diagram near the FP boundary at low den-
sities.

Furthermore, it is particularly worth noting that K
 seems
to be enhanced significantly at the FP boundary near half-
filling. �In this area, precise evaluation of K
 in the thermo-
dynamic limit 1 /L→0 is rather hard because
��K
�L� /��1 /L�� increases with decreasing the inverse sys-
tem size 1 /L.� If definition �3� could still be valid in this
region, K
 become quite large, �1. For the van Hove singu-
larity, the charge susceptibility � in Eq. �4� can diverge and
the Drude weight D in Eq. �5� must remain finite. This may
be associated with the C1S0 phase attributed to the van Hove
singularity at kF1=0 �or kF2=�� in the weak-coupling phase
diagram. This is consistent with the prediction that the super-
conducting fluctuations increase with increasing the differ-
ence between �vF1� and �vF2�, as was suggested in Ref. 9.

D. Spin gap

For more elaborate studies of the region with four Fermi
points, we consider the spin degrees of freedom in the
strong-coupling regime U=10t1. Of particular interest here is
the presence or absence of a finite energy gap in the spin
excitation spectrum. We thus evaluate the spin gap defined
by an energy difference between the first spin-triplet excited
state and the singlet ground state. i.e.,

�s = lim
L→�

�Egs�N,1� − Egs�N,0�� , �22�

where Egs�N ,Sz� is the ground-state energy for a given num-
ber of electrons N and z component of the total spin Sz. It is,
however, known that, for some parameter values, the spin
gap becomes too small to figure out if it remains finite, e.g.,
�s�10−3t1. For verifying the presence or absence of the spin
gap, we then calculate the TLL spin exponents, which are
given by

K� = lim
L→�

L

2 �
kl

ei�2�/L��k−l�
Sk
zSl

z� , �23�

where Si
z=ni↑−ni↓. We should find that the spin exponent

takes the value K�=0 in the spin-gapped phase and K�=1
everywhere else in the thermodynamic limit.47 However, for
finite-size systems, the situation is not so simple. In practice,
in the spin-gapless phase, one cannot expect to find the value
K�→1 due to the logarithmic corrections. It is known that
the logarithmic corrections vanish at which the spin gap
opens, in analogy with the dimerization transition in the
J1-J2 model �see Eq. �24� below�.48 Also, in the spin-gapped
phase, if the spin gap is very small, the convergence of K� to
0 will obviously occur only for very large systems. There-
fore, we determine here the critical point at which the spin
gap opens by adopting the condition that the value of K


crosses 1. This method was first proven to be useful in Ref.
49. In Figs. 6�a�–6�d�, the spin gap and TLL spin exponent
calculated by the DMRG method are plotted as a function of
the band filling n for various t2 / t1 values.

For U� t1 , t2, our model in Eq. �1� at half-filling can be
mapped onto a Heisenberg model:

H = J1�
i

S� i · S� i+1 + J2�
i

S� i · S� i+2, �24�

with J1=4t1
2 /U and J1=4t2

2 /U. This model has been exten-
sively studied both analytically48,50–52 and numerically.11,21 It
has been found that the spin gap opens when J2 /J1�0.241;
the ground state is of a dimerized zigzag-bond state for
0.241	J2 /J1�0.5 and of the Majumdar-Ghosh state with
incommensurate spiral correlations for J2 /J1�0.5. For ex-
ample, the spin gap was estimated to be �s	0.25J1 at
J2 /J1��t2 / t1�2=1 in the previous DMRG study.52 This value
is comparable to our estimation �s / t1	0.05 for t2 / t1=1 and
U=10t1. Also, the spin gap is of an exponential dependence
on J2 /J1 as �s�exp�−const�J2 /J1� for large J2 /J1 values,
which is consistent with a very small spin gap �s / t1
�0.0005 for t2 / t1=2 and U=10t1 obtained in our calcula-
tions.

Let us turn to the evolution of the spin gap upon doping.
In the weak-coupling phase diagram, a metallic phase with
four �two� Fermi points is simply characterized as the spin-
gapped �gapless� TLL. However, for large-U values, it is
difficult to speculate the n dependence of the spin gap be-
cause of the competition between the antiferromagnetic ex-
change interaction and two kinds of the ferromagnetic inter-
actions. One is induced by the Nagaoka mechanism, which
leads to long-range ferromagnetic fluctuations for slightly
doped systems,14,53 where the mechanism is known to work
even for finite doping levels.16,54 The other is the three-site
ring-exchange mechanism, which yields ferromagnetic spin
correlations for the intermediate filling.22 This mechanism
works only when the product of three hopping integrals
along the triangles forming the triangular lattice is positive,
i.e., t1

2t2�0 in our system �see Fig. 1�a��. Away from half-
filling, the spin gap has so far been calculated with the
DMRG methods for some parameters,22,44,55 and we now
study the spin gap in a wider range of the n-t2 / t1 plane. The
results are the following:

�i� For t2 / t1=−1, n�1 �Fig. 6�a��, the spin gap is consid-
erably enhanced with decreasing n near half-filling. Since the
geometrical spin frustration is reduced by doping, the spin-
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FIG. 6. Calculated values of the spin gap �solid symbols, left
axis� and TLL spin exponent �open symbols, right axis� at �a�
t2 / t1=−1, �b� 1, �c� −2, and �d� 2. U / t1=10 is assumed. The solid
line denotes K�=1 and the vertical dotted lines indicate the critical
boundaries between the presence and absence of the spin gap.
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singlet bound state is in a better position to be formed. The
value of �s increases rapidly as n decreases, reaches the
maximum value �s / t1�0.2 around n�0.8, and goes down
to zero at the FP boundary n�0.64. The spin gap is always
zero when the system has two Fermi points, which is in
agreement with the weak-coupling phase diagram. We
should note that no singularity in the spin gap is found at
half-filling.

�ii� For t2 / t1=−2, n�1 �Fig. 6�c��, the spin gap is en-
hanced by doping in the vicinity of half-filling, as in the case
of �i�. However, unlike in case �i�, the spin gap vanishes
around n�0.93 even though the system has still four Fermi
points. This may be related to the ferromagnetic spin fluc-
tuations induced by the Nagaoka mechanism. Thus, the re-
gion for 0.81�n�0.93 is spin gapless. Further away from
half-filling, the Nagaoka mechanism can no longer work well
and the ferromagnetic fluctuations weaken. Consequently,
the spin gap opens again in the filling from n�0.81 to the FP
critical boundary n�0.45. It is also interesting to note that
the critical filling n�0.81 agrees with the TLL critical
boundary; i.e., the spin gap starts to open at the point of
K
=0.5.

�iii� For t2 / t1=1, n�1 �Fig. 6�b��, the spin gap is always
finite for small-U values �see Ref. 44�. For large-U values,
however, the spin gap behaves intricately as a function of
doping due to the existence of two types of the ferromagnetic
fluctuations. Near half-filling, �s decreases with decreasing n
and disappears around n�0.88. We can see that no spin gap
exists in the region 0.57�n�0.88. This is consistent with
the fact that the critical interaction strength Uc at the ferro-
magnetic transition is relatively small for this region,44

which would indicate the strong ferromagnetic fluctuations
there. Then, with decreasing n, the spin gap opens again
around n�0.57, where the Nagaoka mechanism no longer
works well. Like in case �ii�, the point where the spin gap
opens is on the TLL critical boundary. By further doping, the
spin gap closes around n�0.4. For n�0.4, the spin gap is
zero due to the ferromagnetic fluctuations induced by the
three-site ring-exchange interaction. Note that there is no
spin-gapless region derived by the three-site ring-exchange
interaction in the case of �ii� where t1

2t2�0.
�iv� For t2 / t1=2, n�1 �Fig. 6�d��, the properties are

qualitatively the same as in the case of �iii�. The spin gap
remains finite only for a tiny region in the vicinity of half-
filling �n�0.97� and for a small region adjacent to the TLL
critical boundary �0.74�n�0.85�. The three-site ring-
exchange interaction is more robust than in the case of �iii�,22

so that the gapless area becomes wider �n�0.74�.

E. Fully polarized state

Of further interest is the presence of the fully polarized
ferromagnetic state, which occurs when t2 is positive in the
strong-coupling regime. Previously, for U=�, ferromag-
netism has been analytically shown to exist in the three lim-
iting cases: n→1,14 t2→0,15 and n→0.16 Also, for finite-U
values, it has been shown numerically that there is an exten-
sive ferromagnetic phase, where the exact diagonalization,17

variational,18 and DMRG �Ref. 19� methods have been used.

Let us then investigate how the ferromagnetic phase ap-
pears in the phase diagram. We can find it by calculating the

expectation value of total-spin operator S� in the ground state,
which is defined by


S�2� = �
ij


S� i · S� j� = S�S + 1� . �25�

For a fully polarized state, one will obtain S=Smax=N /2, i.e.,
S /Smax=1. In Fig. 7, we show the total spin S normalized
with respect to Smax as a function of t2 / t1 at U=10 and n
=1 /6 for various system sizes. We can see a transition be-
tween paramagnetic and ferromagnetic states at �t2 / t1�c

�0.1 and 0.95. The change in S /Smax at �t2 / t1�c becomes
sharper with increasing L, suggesting the transition to be
�almost� discontinuous for L�72. Therefore, the transition
may be of the first order in the thermodynamic limit. Thus,
the critical transition point can be determined in the param-
eter space, which will be given in the next subsection.

F. Phase diagram

Based on the calculated results of the TLL parameters
K
,�, spin gap �s, and total-spin quantum number S, we draw
a U=10 phase diagram of the 1D Hubbard model with the
next-nearest-neighbor hopping. The result is shown in Fig.
8�a�. We find that our system �Eq. �1�� exhibits a variety of
phases in the parameter space of t2 / t1 and n; it includes a
paramagnetic metal �PM�, a spin-gapped liquid with incom-
mensurate spiral correlations, a paramagnetic metal with
strong ferromagnetic fluctuations �f-PM�, a fully polarized
ferromagnetic metal �FPFM�, a spin-singlet superconductiv-
ity, and a spin-triplet superconductivity. The bold and dotted
lines in Fig. 8�a� indicate the FP and the TLL critical bound-
ary, respectively, and the shadowed area represents a spin-
gapped phase.

When the system has two Fermi points, the ground-state
properties are essentially the same as those of the standard
1D Hubbard model with t2=0. The system is thus a paramag-
netic metal with 0.5�K
�1, where the 2kF-SDW correla-
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FIG. 7. Calculated values of the total-spin quantum number S as
a function of t2 / t1 for various system sizes L. U / t1=10 and n
=1 /6 are assumed.

PHASE DIAGRAM OF THE ONE-DIMENSIONAL HUBBARD… PHYSICAL REVIEW B 77, 085119 �2008�

085119-7



tion is most dominant. The introduction of t2 brings a sort of
frustration to the 2kF-SDW oscillation, but the oscillation is
never broken down as long as the system has two Fermi
points.

We now turn to the region with four Fermi points. As
shown in Sec. IV D, this region consists of the TLL �K


�1 /2� and non-TLL-like �K
�1 /2� phases �see Fig. 8�b��.
Looking first at the TLL phase with K
�1 /2, the supercon-
ducting correlation is most dominant according to the TLL
theory. The superconducting phase for t2�0 is further di-
vided into a couple of phases, depending on the presence or
absence of the spin gap; the spin-gapless phase extends over
a wide range for large t2, which is in contrast to the weak-
coupling phase diagram. This spin-gapless area seems to be
expanded by increasing the on-site interaction U, as com-
pared to the previous DMRG results for U=2t1.11 �In Ref.
11, this phase is characterized as 2�C1S1=C2S2.� The
ground state is featured as the spin-triplet superconductivity,
as has been confirmed numerically.22 On the other hand, the
spin-gapped phase is characterized by the spin-singlet super-
conductivity, which is remnant of a wide C1S0 region in the
weak-coupling phase diagram. It is particularly worth noting
that the TLL phase for t2�0 is always spin gapped and the
spin-singlet superconducting correlation is most dominant.
This is consistent with the fact that the three-site ring-
exchange interaction for spin-triplet coupling does not work
if t1

2t2�0.
The other TLL phase belongs to the fully polarized ferro-

magnetic metal near the FP boundary and at low densities. A

nearly flat-band system is realized since the two-band
minima are slightly occupied by electrons at low densities
�or the band maximum at k=0 is slightly occupied by holes
near the FP boundary�. Consequently, the ferromagnetic
ground state is stabilized. In the FPFM phase, we estimate
the TLL parameter as K
�0.5 �see Fig. 5�b��, which is the
same as that of a spinless fermion system.

We next consider the non-TLL-like regime, which ex-
tends between the TLL region and the half-filling line. The
paramagnetic phase with strong ferromagnetic correlation is
located in the vicinity of the TLL regime, where the ferro-
magnetic fluctuations are enhanced due to the Nagaoka
mechanism; this phase is denoted as f-PM in Fig. 7. At the
present value of U, the total spin of the ground state is zero
in the entire area of the f-PM phase. As U increases, the
f-PM phase is enlarged and the system would be fully polar-
ized at a critical value of U.

Upon further approaching the vicinity of n=1, the spin-
gapped region appears again. Although most of the spin-
gapped region is paramagnetic, a narrow spin-singlet super-
conducting phase with K
�0.5 exists along the FP boundary
line. We can interpret this situation by assuming the system
to be a slightly doped J1-J2 Heisenberg model �Eq. �24��: for
J2 /J1�0.5, the ground state is of the Majumdar-Ghosh state
with incommensurate spiral correlations and the spin-singlet
bound state is formed along the t2 chains, where the spin-
singlet bound state cannot easily move. On the other hand,
for 0.241	J2 /J1�0.5, the ground state is of a dimerized
zigzag-bond state where the spin-singlet bound state is
formed between the two t2 chains. At finite doping levels of
holes, the spin-singlet pairs are mobile in this region, so that
in the ground state, an additional pair of holes is actually
confined to a “rung” because the gain in kinetic energy due
to the hole motion is larger than the combined loss in the
pairing energy and kinetic energy of the spin dimers in the
Majumdar-Ghosh state. Thus, the narrow spin-singlet super-
conducting state can be regarded as the doped zigzag-bond
state.

V. SUMMARY

We have studied the 1D Hubbard model with the nearest-
neighbor and next-nearest-neighbor, hopping integrals by us-
ing the DMRG method and HF approximation. Based on the
calculated results of the TLL parameters, spin gap, and total-
spin quantum number, we have determined the ground-state
phase diagrams in the weak-coupling �U=2t1� and strong-
coupling �U=10t1� regimes. Surprisingly, the strong-
coupling phase diagram contains a large variety of distinct
phases, depending on the hopping integrals and band filling.

We have found for U=2t1 that the HF results agree well
with the DMRG results except for t2�0 and n�1 where the
umklapp scattering strength is dominant. The phase diagram
is qualitatively the same as that in the weak-coupling limit.
When the system has two Fermi points, the 2kF-SDW corre-
lation is most dominant with 1 /2�K
�1. As soon as the
Fermi surface splits from two into four points, the parameter
K
 drops �almost� discontinuously to 1 /2. We then have
found K
�1 /2 in the entire region with four Fermi points

FIG. 8. �a� Ground-state phase diagram of the 1D Hubbard
model with the next-nearest-neighbor hopping, calculated by the
DMRG method. U / t1=10 is assumed. The bold �dotted� line indi-
cates the FP �TLL� critical boundary and the shadowed area repre-
sents a spin-gapped phase. We use the following abbreviations: PM,
paramagnetic metal; SG, spin-gapped liquid with incommensurate
spiral correlations; f-PM, paramagnetic metal with strong ferromag-
netic fluctuations; FPFM, fully polarized ferromagnetic metal; SS
�TS�, spin-singlet �triplet� superconductivity. �b� Boundary lines be-
tween the TLL and non-TLL-like regions.
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and thus the superconducting correlation is most dominant.
We have then found for U=10t1 that the HF results no

longer agree with the DMRG results because the umklapp
scattering strength becomes very large. Due to the unconven-
tional combination of the charge and spin degrees of freedom
induced by the next-nearest-neighbor hopping, the system
can accommodate a variety of physical phenomena unparal-
leled in the simple 1D Hubbard model. The region with two
Fermi points is characterized by the 2kF-SDW phase as in
the case of U=2t1. However, the region with four Fermi
points is drastically affected by the Coulomb interaction and
the breakdown of the TLL state occurs near half-filling. The
strong-coupling phase diagram contains a large number of
distinct metallic phases, namely, a paramagnetic metal, a
spin-gapped liquid with incommensurate spiral correlations,
a paramagnetic metal with strong ferromagnetic fluctuations,
a fully polarized ferromagnetic metal, a spin-singlet super-
conductivity, and a spin-triplet superconductivity.

In contrast to the weak-coupling phase diagram which
predicts a spin-gapped liquid �or superconducting� phase
when the system has four Fermi points, we have found that
the spin gap vanishes in the substantial region in the strong-
coupling phase diagram. The absence of the spin gap is de-
rived by three types of ferromagnetic mechanisms. The first
is the flat-band mechanism around the FP boundary and at
low densities. A nearly flat band is realized since the two-
band minima are slightly occupied by electrons at low den-
sities �or the band maximum at k=0 is slightly occupied by
holes near the FP boundary.� Thus, the ground state is stabi-

lized as the fully polarized ferromagnetic state. The second is
the three-site ring-exchange interaction for t2� t1 at interme-
diate filling, where all the triangles formed by the hopping
integrals satisfy the ferromagnetic sign rule t1

2t2�0.22 The
ferromagnetic interaction is short ranged42 and is not suffi-
cient to make the system ferromagnetic. The third is the Na-
gaoka mechanism near half-filling. Since the competing an-
tiferromagnetic exchange interaction is large, the ground
state is not fully polarized.

Concerning the superconductivity, we have found a
couple of new phases, which are absent in the weak-coupling
limit. One is the spin-triplet superconducting phase for t2
� t1, where the attractive interaction is caused by the gain in
kinetic energy due to ring exchange of electrons. The other is
the spin-singlet superconducting phase along the FP bound-
ary near half-filling, where the superconducting fluctuations
are enhanced by the large difference between two Fermi ve-
locities. This state is also regarded as the doped zigzag-bond
spin-gapped state.
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